Using Large-scale Environment to Improve Passive Microwave Estimates of Heavy Precipitation

Veljko Petković¹,², Christian Kummerow¹, David Randel¹, Jeffrey Pierce¹, John Kodros¹

¹Cooperative Institute for Research in the Atmosphere (CIRA)
Colorado State University, Fort Collins, Colorado

²Cooperative Institute for Climate and Satellites-Maryland (CICS-MD)
University of Maryland, College Park, Maryland; veljko@atmos.colostate.edu

CICS Science Meeting November 2017
Earth System Science Interdisciplinary Center University of Maryland, College Park
Flood event

Satellite
- Radar overpass match only
- Radar native resolution
- Best estimate (radar+gauge+QC)

Non-flood event

Z-R
- Flood event: $70 \, R^{1.6}$
- Non-flood event: $240 \, R^{1.6}$

GPROF bias
- Flood event: -60%
- Non-flood event: -20%

Regime
- Flood event: Well-organized
- Non-flood event: Scattered, Average

Global Distribution of Regional Biases of GPROF Retrieval

Total Lightning Activity [flashes km$^{-2}$ yr$^{-1}$] by the Lightning Imaging Sensor
period 1998-2013

Mean daily rain rate differences between PR and TMI
Separate 1° x 1° raining scenes into: **Shallow**, **Deep-Unorganized** and **Deep-Organized** systems using:

- Radar top echo height
- Convective rainfall
- Raining fraction

(Elsaesser et al. 2010, *J. Climate*)

Veljko Petkovic; CICS science meeting 2017
Large-scale Environment to Regime and Bias Link

Regime-related environment:
- CAPE
- Shear
- Low-level humidity
- Vertical distribution of humidity
- Aerosol concentrations

Source: Era-Interim

Relative frequency of occurrence [%]

- Low CAPE
- Medium CAPE
- High CAPE

Large-scale Environment to Regime and Bias Link

Veljko Petkovic; CICS science meeting 2017

Results - Redistribution of the \textit{a priori} Elements Weights

Original

CAPE

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>New</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean rain rate [mm h(^{-1})]</td>
<td>2.87</td>
<td>3.11</td>
<td>3.89</td>
</tr>
<tr>
<td>Correlation</td>
<td>0.66</td>
<td>0.69</td>
<td></td>
</tr>
</tbody>
</table>

Change in Bayesian weight distribution (New – Org.)
Results - Improving the Quality of Heavy Precipitation Estimates

Precipitation Bias Improvement
top 10% rainfall rate

21% of mean rain rate bias removed

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>New</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean rain rate [mm h⁻¹]</td>
<td>2.87</td>
<td>3.11</td>
<td>3.89</td>
</tr>
<tr>
<td>Correlation</td>
<td>0.66</td>
<td>0.69</td>
<td></td>
</tr>
</tbody>
</table>

Veljko Petkovic; CICS science meeting 2017
Results- Improving the Quality of Heavy Precipitation Estimates

Original bias: -28%
New Bias: -13%
Original Correlation: 0.66
New Correlation: 0.77
MRMS mean rain rate: 3.89 mm h\(^{-1}\)
Original mean rain rate: 2.87 mm h\(^{-1}\)
New mean rain rate: 3.47 mm h\(^{-1}\)
Results - Impact to the Overall Performance of the Retrieval

Original Bias: -13%
New Bias: -10%
Original Correlation: 0.75
New Correlation: 0.80
MRMS mean rain rate: 0.57 mm h\(^{-1}\)
Original mean rain rate: 0.50 mm h\(^{-1}\)
New mean rain rate: 0.51 mm h\(^{-1}\)
Summary - Conclusions

Problem:
- Passive microwave satellite rainfall retrievals over land are often biased due to limited information content of the observation vector.

Hypotheses:
- Large-scale environment can compensate for lack of information by eliminating non-relevant elements of the a priori information.

Results:
- Variability in cloud microphysics is responsible for the biases.
- Precipitation regimes (level of system organization) have distinct bias preference.
- Large-scale environment links well to precipitation regime type.
- 30% - 40% of the bias can be removed by implementing information on large-scale environment into the algorithm.
Literature

