Capabilities and Limitations of New Lightning Data Sets in Operations

Doug Kahn – University of Maryland, College Park, MD
Scott D. Rudlosky – NOAA/NESDIS/STAR, College Park, MD

Overview

Knowledge of lightning detection network capabilities becomes more important as both the number of networks and variety of users increase. Operational weather forecast offices receive several lightning data sets in real time, and use these data to help improve convective weather forecasts. Lightning generates electromagnetic pulses that propagate as radio waves in all directions. These lightning emissions generally range from very-high frequency (VHF) and high-frequency (HF) to very-low frequency (VLF) and low-frequency (LF) emissions. Several ground-based networks monitor various portions of these frequency ranges to locate and characterize both cloud-to-ground (CG) and intra-cloud (IC) lightning. This study uses the Warning Decision Support System – Integrated Information software (WDSS-II) to visualize lightning observations from the Washington D.C. Lightning Mapping Array (DCLMA), Earth Networks Total Lightning Network (ENTLN), and National Lightning Detection Network (NLDN). These lightning data are examined alongside radar and model-derived parameters to track and characterize convective storms. This study explores relationships between the ground-based lightning observations, focusing on significant convective weather outbreaks in the DCLMA domain (i.e., Washington D.C., Maryland, and Virginia region). These visualizations and statistics aim to advise National Weather Service (NWS) forecasters on the real-time application of lightning data in operations.

Lightning Sensors

- DCLMA domain and sensor locations
- ENTLN sensor
- Example LMA “box” (computer)
- DCLMA sensor
- A DCLMA site in Virginia
- NLDN sensor
- LMA + NLDN
- LMA + ENTLN

Cloud ground flashes are red, white intra-cloud flashes are white dots. FED is in the gray, green, and orange color bar background. FED is determined by the number of flashes passing through a 1x1 grid point per 1 minute.

Current Research Using WDSS-II

- Warning Decision Support System – Integrated Information software
- Developing database of storms with intense lightning
- Grouping storms based on radar attributes
- Merging Dover (KDOX) and Sterling (KLWX) sites for wider radar coverage
- Investigating lightning jump occurrence alongside radar parameters (REF-20C)

Isosurfacing

- These total lightning observations provide detailed insights into the structure and evolution of convective storms, extending warning lead times for severe weather

Height Comparisons

- Comparing heights between DCLMA sources and ENTLN intra-cloud portions
- Found improvement in the agreement between the DCLMA and ENTLN heights from 2012 to 2015
- Evaluating different networks on how they perform in WDSS-II’s lightning jump algorithm
- Currently based off 2-sigma jump with a threshold of 10 flashes

June 14th, 2015 Case

- Examined borderline severe weather case
- Tracked only one large reflectivity cluster instead of multiple smaller storms

June 18th, 2015 Case

- Manually examined storm clusters and selected those lasting longer than one hour within the DCLMA range
- Storm clustering based on Reflectivity-20C
- Graphed different combinations of the networks to evaluate how they define lightning jumps within severe and non-severe storms
- Manually combined 4 storm clusters into one spatially and temporally coherent storm

Future Plans

- Use total lightning observations to provide detailed insights into the structure and evolution of convective storms and help protect life and property
- Lightning is already becoming a very useful tool for NWS forecasters in determining storm strength and increasing the lead time for severe weather such as tornadoes, hail, and wind
- Use network archives and promote their use in NWS operations
- Continue to refine these lightning and radar data sets and promote their use in NWS operations
- Compile total lightning network archives and document significant severe weather, lightning induced structural damage, and any lightning casualty events
- Track storms using different radar attributes and/or lightning to better define storm features
- Tweak lightning jump algorithm specifications to better identify the lightning jump signature that often precedes severe weather

What’s next?

- Manual combined 4 storm clusters into one spatially and temporally coherent storm
- Merging Dover (KDOX) and Sterling (KLWX) sites for wider radar coverage
- Graphed different combinations of the networks to evaluate how they define lightning jumps within severe and non-severe storms
- Manually combined 4 storm clusters into one spatially and temporally coherent storm
- Use network archives and promote their use in NWS operations
- Continue to refine these lightning and radar data sets and promote their use in NWS operations
- Compile total lightning network archives and document significant severe weather, lightning induced structural damage, and any lightning casualty events
- Track storms using different radar attributes and/or lightning to better define storm features
- Tweak lightning jump algorithm specifications to better identify the lightning jump signature that often precedes severe weather

June 14th, 2015 Case

- Examined borderline severe weather case
- Tracked only one large reflectivity cluster instead of multiple smaller storms

June 18th, 2015 Case

- Manually examined storm clusters and selected those lasting longer than one hour within the DCLMA range
- Storm clustering based on Reflectivity-20C
- Graphed different combinations of the networks to evaluate how they define lightning jumps within severe and non-severe storms
- Manually combined 4 storm clusters into one spatially and temporally coherent storm

Future Plans

- Use total lightning observations to provide detailed insights into the structure and evolution of convective storms and help protect life and property
- Lightning is already becoming a very useful tool for NWS forecasters in determining storm strength and increasing the lead time for severe weather such as tornadoes, hail, and wind
- Use network archives and promote their use in NWS operations
- Continue to refine these lightning and radar data sets and promote their use in NWS operations
- Compile total lightning network archives and document significant severe weather, lightning induced structural damage, and any lightning casualty events
- Track storms using different radar attributes and/or lightning to better define storm features
- Tweak lightning jump algorithm specifications to better identify the lightning jump signature that often precedes severe weather

What’s next?

- Manual combined 4 storm clusters into one spatially and temporally coherent storm
- Merging Dover (KDOX) and Sterling (KLWX) sites for wider radar coverage
- Graphed different combinations of the networks to evaluate how they define lightning jumps within severe and non-severe storms
- Manually combined 4 storm clusters into one spatially and temporally coherent storm
- Use network archives and promote their use in NWS operations
- Continue to refine these lightning and radar data sets and promote their use in NWS operations
- Compile total lightning network archives and document significant severe weather, lightning induced structural damage, and any lightning casualty events
- Track storms using different radar attributes and/or lightning to better define storm features
- Tweak lightning jump algorithm specifications to better identify the lightning jump signature that often precedes severe weather