High-resolution bottom albedo images and benthic habitat classification to develop baseline management tools in Natural Reserves

William J. Hernandez, Ph.D. and Roy A. Arsmtrong, Ph.D.
Post-Doctoral Researcher NOAA CREST UPRM
Bio-Optical Oceanography Laboratory UPR-Mayaguez
Outline

- Introduction
  - Remote Sensing
  - Study Area
  - Challenges
  - Sensors (Active/Passive)
- 1. High Resolution Bottom Albedo and Water Optical Characterization of La Parguera Reserve from Active and Passive
- 2. Benthic Habitat Map of La Parguera Reserve using Passive and Active Remote Sensing
- Conclusions
Introduction

Coastal areas

- Important resources
- Ecosystems affected by human-based and natural factors.
- However, little is known about benthic habitats and water properties.

http://gers.uprm.edu/images/bahia.jpg
Study Area

- La Parguera
- DNR Natural Reserve
- Aprox. 12,500 acres
- Unique habitats
- ~Depth 18 meters
- Variable substrate
- Use of Remote Sensing Techniques
METHODS

Pre-processing Steps (co-registration, landmask)
- High Resolution Bottom Albedo and Water Optical Characterization of La Parguera Reserve from Active and Passive Sensors
- Benthic Habitat Map of La Parguera Reserve using Passive and Active Remote Sensing
High Resolution Bottom Albedo and Water Optical Characterization of La Parguera Reserve from Active and Passive Sensors
Objectives

- Characterization of optical properties of La Parguera Reserve.
  - Inherent Optical Properties (IOP)
  - Apparent Optical Properties (AOP)
- Image derived IOP’s/AOP’s from both multispectral (WV2) and hyperspectral (AVIRIS) sensors.
  - Validate image derived with in situ values.
- Water column correction of imagery from IOP/AOP.
  - Lee’s inversion model - QAA (Lee et al., 1999, 2001).
  - Bottom albedo images from AVIRIS and WV2.
\[ L_w = L_w^w + L_w^b + L_w^f + L_w^R \]
AVIRIS Bottom Albedo Image

Isla Magueyes

Turrumote

Media Luna

Isla Margarita
Benthic Habitat Mapping

Goals

- Develop a high-resolution benthic habitat map
  - AVIRIS and WV2 modeled bottom albedo
- Identify ecologically important habitats in La Parguera for scientific and management purposes.
- Improve the methods for developing objective-based classifications from high-resolution satellite imagery.
Methods

AVIRIS / WV2 Image
- Atmospheric correction
  - Water column correction

AVIRIS bottom albedo  WV2 bottom albedo

ISOData

Raster to polygons (clusters)

Field data
  Ground validation
  Accuracy assessment

Legend

Processing

Data/Imagery

Ground Validation (Spatial Join)

Draft Benthic Habitat Maps

Accuracy Assessment
- Overall accuracy
- Kappa coefficient
- Tau coefficient

Benthic Habitat Maps
- AVIRIS
  - WV2
Benthic habitat classification scheme

(1) Coral Reefs  (2) Seagrass  (3) Hardbottom

(4) Mix: Sand/
        Hardbottom/Coral

(5) Mud

(6) Sand

(7) Sand with Benthic Algae
Sampling Sites

- Delta Vision Pro
  - Drop Camera HD Video (1080p)
  - 10-second video collected
  - DVR

- Trimble Juno GPS
  - 10-second averaging
  - dGPS
  - 2 meters

- Synchronized GPS and video
Ground Validation and Accuracy Assessment Points
Classification

- Clusters obtained from ISODATA classification
  - 150 clusters with 5 iterations
  - Identified multiple class / benthic habitat (confused pixels)
- Converted to polygons in ESRI ArcMap 10.3.
- Spatial Join Tool
  - Polygons assigned to a class based on ground validation.
  - Joining based on spatial location.
  - Attribute of the nearest point is collected and a distance value is recorded.
- Dissolve Tool from ESRI ArcMap 10.3.
AVIRIS (before water column correction)

AVIRIS (after water column correction)

AVIRIS Classification

Legend
AVIRIS Image Classification
- Mix: Sand/Hardbottom/Coral
- Coral Reefs
- Seagrass
- Sand
- Hardbottom
- Mud
- Sand with Benthic Algae

Isla Magueyes
Media Luna
Turrumote
Isla Margarita

0 2.5 5 Kilometers
Findings

- Confusion matrix (Jensen, 1996)

- Overall Accuracy
  - AVIRIS classification = 63.55%
  - WV2 classification = 64.81%

- Our study area
  - ~168 Km²
  - depth range from 0-41 meters (average depth = ~18 meters).

- Kappa coefficient
  - AVIRIS (55%) and WV2 (57%). “Moderate” classification (Landis and Koch 1977)

- Tau coefficient
  - AVIRIS (59%) and WV2 (60%).
Findings

- **Image acquisition dates.**
  - Massive bleaching event occurred during the AVIRIS image acquisition followed by a coral reef mass-mortality (Eakin et al. 2010).
  - Detrimental to Montastraea (Orbicella) annularis complex resulting in mortalities in the order of 50% (Garcia-Sais et al. 2008).
  - These factors may explain the difference in the total area covered of the coral reef class between the AVIRIS image (50.32 km²) and the WV2 (22.89 Km²).
Conclusions and Remarks

- From top-of-atmosphere (TOA) to bottom albedo.
  - Atmospheric and water column corrections improve benthic habitat mapping.
- Benthic habitat maps developed from bottom albedo images of both AVIRIS and WV2 sensors.
- Change detection
  - Reduction in the coral reefs class total
- Development of benthic habitat mapping tools for La Parguera Reserve.
Web Mapping Application

Benthic Habitat Mapping La Parguera

Legend

Drop Cam Sampling La Parguera

Inherent Optical Properties La Parguera
Acknowledgements

- NOAA Cooperative Remote Sensing Science and Technology Center (CREST) program under grant number NA11SEC 4810004.
- Bio-Optical Oceanography Lab team (UPRM)
- Dr. Liane Guild (NASA) for AVIRIS imagery
- Digital Globe® for the WV2 imagery.

QUESTIONS?

WILLIAM.HERNANDEZ@UPR.EDU
BACK UP SLIDES