The impact of upgrading the background covariance matrices in NOAA Microwave Integrated Retrieval System (MiRS)

Junye Chena, Quanhua Liub, Mohar Chattopadhyayc, Kevin Garrettd, Christopher Grassottia, Shuyan Liue, Sid Boukabarab

aUniversity of Maryland, College Park, MD USA;
bSTAR/NESDIS/NOAA, College Park, MD USA;
cAER, College Park, MD USA;
dRiverside (RTi), College Park, MD USA;
eCIRA, College Park, MD USA
Outline

• MiRS introduction
• Update the geophysical background covariance matrices based on EC-137 data set
• Validation based on dropsonde data and ECMWF analysis
• Conclusion
MiRS Introduction

The Microwave Integrated Retrieval System (MiRS) is the operational retrieval system of NOAA/NESDIS. MiRS is a one-stop shop for retrieval products from various microwave instruments (AMSU/MHS, SSMI/S, ATMS, GMI) aboard different satellites (NOAA, MetOp, DMSP, S-NPP, JPSS, GPM).

- The state vectors (Temp, Water Vapor, hydrometeor profiles, surface emissivity and skin Temp) are simultaneously retrieved by minimizing below cost function in a 1DVAR scheme with CRTM as the forward operator:

\[
J(X) = \frac{1}{2}(X - X_0)^T \times B^{-1} \times (X - X_0) + \frac{1}{2}(Y^m - Y(X))^T \times E^{-1} \times (Y^m - Y(X))
\]

- Post processing generate derived surface products (TPW, CLW, RWP, IWP, RR, Sea Ice, SWE, SGS).

- Valid globally over all surface types in all weather conditions.
The Current Geophysical Background Covariance Matrix B is outdated

- Accurate background covariance matrices are essential in a variational retrieval system, like MiRS.
- The current covariance matrices were mainly built based on the ECMWF 60 layer sample data set (EC-60), which was released in 2001 and based on the ECMWF analysis data at that time.
- In the recent decade or so, there are plenty of advances in global observation system, NWP model and data assimilation scheme to warrant ECMWF to produce two more generations of sample datasets, namely the 91-level (EC-91) and 137-level (EC-137) datasets.
- The newest dataset, EC-137, includes more parameters than its precedents, for example, the rain water content, which is an essential component of the MiRS background covariance matrix in rainy condition.

In the current MiRS background covariance matrix, the component of rain water content was generated based on MM5 simulation data, which is not necessarily consistent with the ECMWF analysis data for other parameters.
The characters of EC-137 dataset

The EC-137 dataset is more evenly distributed in both temporal and spatial domains. The vertical profiles have significant different distribution than its precedents.

http://nwpsaf.eu/site/software/atmospheric-profile-data/
Courtersy of Reima Eresmaa and Anthony P. McNally,
ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom

MiRS Introduction Covariance Matrices Validation Conclusion
Update Covariance Matrices

- Precip and Non-Precip conditions are separated
- In new matrices, the covariance between rain and other variables becomes meaningful.

MiRS Introduction Covariance Matrices Validation Conclusion
Validation after the new covariance matrices implemented

Validation is conducted by inter-comparing the MiRS NPP ATMS retrievals with the new/old covariance matrices, the collocated NASA/NOAA 2013-2014 HS3 Dropsonde data, and ECMWF analysis.

![Graphs showing temperature and water vapor comparisons](image)
Although only 38 collocated HS3 dropsonde profiles are identified in 2013-2014, the statistic still tell us: ECMWF is quite close to the HS3 dropsonde measurement, so could be used as an alternative reference.
Global all Condition T Statistic refer to ECMWF

- One day global ATMS retrievals, comparison with ECMWF analysis on 11/13/2015.
- Noticeable improvement over ocean

Bias: MiRS-oper
STDV: MiRS-oper

Bias: MiRS-test
STDV: MiRS-test

Land
Ocean
Global Rainy T Statistic refer to ECMWF

Significant improvement in Rainy condition over ocean in both T bias and STDV
Global Rainy Over Sea WV Statistic refer to ECMWF

No significant improvement in Rainy condition over ocean in WV profile bias and STDV
- Significant improvement in TPW in both Cloudy and Rainy conditions over ocean
- Migrated some high TPW case from Cloudy to Rainy
Conclusion

- Upgrading the Geophysical Background Covariance Matrices based on the EC-137 dataset improves the atmospheric T and WV retrieval in MiRS.
- The most significant improvement is in rainy condition over sea.

Future work
- Tune the system with the new covariance matrices.
- Additional validation based on more sonde data.
- More comprehensive validation based on ECMWF analysis in different season and different climate zone.
- Apply the new background covariance matrices for other instruments.