NOAA’S MICROWAVE INTEGRATED RETRIEVAL SYSTEM (MIRS): RECENT ACTIVITIES AND SCIENCE IMPROVEMENTS

Contributions from:
Shuyan Liu, Junye Chen, Mark Liu (MiRS Team)
Carlos Perez-Diaz (CUNY/CREST)
John Forsythe (CSU/CIRA)
Kevin Garrett (NOAA/STAR), Pan Liang (AER)

Chris Grassotti
NOAA/NESDIS/STAR
U. Md. ESSIC/CICS
7 November 2017
Outline

• Algorithm Overview

• S-NPP Product(s) Overview
 – Standard validation: global performance for T, WV Sounding
 – Targeted validation:
 o in situ reference data (SURFRAD) for LST

• Applications/Example
 – Blended Layer Water Vapor
 – Hurricane Harvey example

• New Activities/Science Improvements
 – Air mass-dependent radiometric bias correction
 – Tropical Cyclone Adaptation (MiRS-TC)

• Summary and Path Forward
Algorithm Overview

MiRS Components

- **Forward RT Model (CRTM):**
 - 1. \(TB = F(\text{Geophysical State Vector}) \)
 - 2. Jacobians (dTB/dX)

- **A Priori Background:**
 - Mean and Covariance of Geophysical State

- **Basis Functions for State Vector:**
 - Reduce degrees of freedom in geophysical profile (~20 EOFs)

- **Uncertainty of satellite radiances:**
 - Instrument NEDT + Fwd Model uncertainty

Geophysical State Vector (OUTPUTS)

- Temp. Profile (100 layers)
- Water Vapor Profile (100)
- Cloud Water Profile (100)
- Graupel Water Profile (100)
- Skin Temperature (1)

MiRS 1D Variational Retrieval

A priori BG mean: obtained from dynamic climatology, not NWP

Satellite Microwave (TB) Measurements (INPUTS)

- ~ 20 channels (multispectral)
- TB (Channel 1)
- TB (Channel 2)
- TB (Channel 3)
- TB (Channel Ntot)

MiRS Postprocessing

Derived Products (OUTPUTS)

- TPW
- CLW
- RWP
- GWP
- RR
- SFR
- SIC/SIA
- SWE/GS

MiRS Components

- MW Only, Variational Approach: Find the “most likely” atm/sfc state that: (1) best matches the satellite measurements, and (2) is still close to an a priori estimate of the atm/sfc conditions.
- “Enterprise” Algorithm: Same core software runs on all satellites/sensors; facilitates science improvements and extension to new sensors.
- Initial capability delivered in 2007. Running v11.2 since Jan 2017 on SNPP/ATMS, N18, N19, MetopA, MetopB, F17, F18, GPM/GMI, Megha-Tropiques/SAPHIR. (eventually MetopC…)
- Delivery of J1/ATMS (v11.3) capability in Spring 2018, assuming 10 Nov launch.
- External Users/Applications: TC Analysis/Forecasting at NHC, Blended Total/Layer PW at NHC and WPC, MIMIC TPW Animations (U. Wisconsin), CSPP Direct Broadcast (U. Wisconsin), NFLUX model (NRL, Stennis), Global blended precipitation analysis at NOAA/CPC (CMPORPH),…
MiRS SNPP/ATMS Temperature and WV Bias vs. Raobs (NPROVS): Sept 2015 – August 2017

- T profile reduction in stratospheric cold bias
- WV reduction in lower tropospheric dry bias, especially over land
- WV apparent increase in moist bias above 600 hPa may be artifact of known dry bias of radiosondes in upper troposphere

MiRS radiometric bias corrections for T sounding channels (5-12): Block 1 (Static) and Block 2, OBS-SIMULATED

- These corrections are subtracted from observed TBs prior to retrieval (i.e. negative means correction increases TB)
- Block 2 corrections generally ~0.5 to 1 K lower than Block 1
Validation of Land Sfc Temperature

• Daily Comparisons:
 – Automated global comparisons with both ECMWF and GDAS; results posted daily
 – Advantage: Global coverage, all sfc and weather conditions, large sample sizes
 – Disadvantage: LST from NWP analyses may have large errors depending on obs available and land surface assimilation model.

• Targeted collocations with in situ data:
 – Collocations with SURFRAD LST (IR Flux Based): May 2016-May 2017, 6 stations over the CONUS
 – Advantage: in situ, direct measurement (need to convert from flux to LST using Stefan-Boltzmann law), IR emissivity assumed=0.97
 – Disadvantage: IR LST, not same as MW LST (vertical penetration/emission depth), representiveness error (point vs. IFOV average)
 – SURFRAD stations used:

<table>
<thead>
<tr>
<th>Station name</th>
<th>Surface</th>
<th>Latitude (N)/longitude (W)</th>
<th>Elevation (m)</th>
<th>U.S. state</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desert Rock</td>
<td>Open shrub land</td>
<td>36.63°/116.02°</td>
<td>1007</td>
<td>NV</td>
<td>DRA</td>
</tr>
<tr>
<td>Bondville</td>
<td>Cropland</td>
<td>40.06°/88.37°</td>
<td>230</td>
<td>IL</td>
<td>BON</td>
</tr>
<tr>
<td>Fort Peck</td>
<td>Grassland</td>
<td>48.31°/105.10°</td>
<td>634</td>
<td>MT</td>
<td>FPK</td>
</tr>
<tr>
<td>Goodwin Creek</td>
<td>Deciduous forest</td>
<td>34.25°/89.87°</td>
<td>98</td>
<td>MS</td>
<td>GWN</td>
</tr>
<tr>
<td>Penn State</td>
<td>Mixed forest</td>
<td>40.72°/77.93°</td>
<td>376</td>
<td>PA</td>
<td>PSU</td>
</tr>
<tr>
<td>Sioux Falls</td>
<td>Grassland</td>
<td>43.73°/96.62°</td>
<td>473</td>
<td>SD</td>
<td>SXF</td>
</tr>
</tbody>
</table>

CICS Science Meeting, 6-8 November 2017
Validation of Land Sfc Temperature: Collocation with SURFRAD, May 2016-May 2017

Collocation with GDAS at SURFRAD sites

<table>
<thead>
<tr>
<th>Validation Parameter</th>
<th>All SURFRAD stations and overpasses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>R</td>
<td>0.91</td>
</tr>
<tr>
<td>Bias (K)</td>
<td>-2.21</td>
</tr>
<tr>
<td>Std. dev. (K)</td>
<td>5.21</td>
</tr>
<tr>
<td>RMSE (K)</td>
<td>5.65</td>
</tr>
<tr>
<td>Slope</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Requirements

<table>
<thead>
<tr>
<th></th>
<th>Bias/ Accuracy (K)</th>
<th>StDev/ Precision (K)</th>
<th>RMS/ Uncertainty (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>4.0</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Objective</td>
<td>3.4</td>
<td>6.3</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Meets threshold

Meets objective

Courtesy of Carlos Perez-Diaz (CUNY/CREST)

Manuscript submitted to GRL
Application: Blended Layer Precipitable Water Combines MiRS WV from up to 7 Polar Satellites for Rapid Refresh and Advection (NWP-based winds)

To be implemented at NHC and WPC in next 1-2 months
Case Study: Hurricane Harvey
27 August, Day of Extreme Flooding

• MRMS: Operational Blended Radar-Gauge Analysis, 1 km resolution
• Both satellite and MRMS detected rainfall rates > 25 mm/h
Development of an Air Mass-Based Radiometric Bias Correction

• Motivation:
 – Current operational MiRS uses Histogram Adjustment Method. Derived over oceanic/clear scenes. Bias specified as function of channel and scan position.
 – Advantages: Stable, reduces impact of outliers/cloud/rain contamination, good at characterizing the average global differences between measurements and model.
 – Disadvantages: Systematic errors in forward model due to over/underestimation of absorber effects (e.g. water vapor, non-precip cloud) not accounted for. (also assumes atmospheric and ocean emissivity models are accurate).

• Testing air mass dependent bias correction (ocean only)
 – Regression-based, 2-steps
 o Step 1: CLW and TPW using uncorrected TBs
 o Step 2: \(dTB(\text{iChan}, \text{iscanpos})=f(\text{CLW}, \text{TPW}, \text{Tskin}, \text{TB(iChan)}) \); Tskin from operational “Dynamic Background” \((f(\text{lat},\text{lon},\text{time},\text{month})) \). Scan position dependent.
 o Applied to all channels except T sounding channels 4-15 (static bias correction used)
 – Applied over ocean only, using ATMS Block 2 SDRs (operational switch in March 2017)
 o Quantify impact on retrieved parameters (e.g. T, WV, ocean emissivity, CLW, TPW, chi-square, iterations)
 – Analogous to variational bias correction used in direct radiance assimilation for NWP
Testing an Air Mass-Based Radiometric Bias Correction

Static Correction (operational)

Air-mass Correction

Ch 1 (23 GHz)

Ch 18 (183+/− 7 GHz)

Courtesy of K. Garrett (RTI) and P. Liang (AER)
Testing an Air Mass-Based Radiometric Bias Correction: Ocean TPW vs. ECMWF

TPW (Static Correction)

- Clear Asc TPW (mm) Over Sea 2015–10–15 (r3783)
 - Corr: 0.990
 - Bias: 1.97
 - StDv: 2.30

- Cloudy Asc TPW (mm) Over Sea 2015–10–15 (r3783)
 - Corr: 0.988
 - Bias: 1.49
 - StDv: 2.51

TPW (Air-mass Correction)

- Clear Asc TPW (mm) Over Sea 2015–10–15 (r3783)
 - Corr: 0.995
 - Bias: 1.54
 - StDv: 1.92

- Cloudy Asc TPW (mm) Over Sea 2015–10–15 (r3783)
 - Corr: 0.991
 - Bias: 1.05
 - StDv: 2.34
Testing an Air Mass-Based Radiometric Bias Correction: Ocean Cloud Liquid Water

Cloudy NPP/ATMS CLW (mm) > 0.05 20150715 Asc (r3783)

CLW > 0.05 mm

Cloudy NPP/ATMS CLW (mm) > 0.10 20150715 Asc (r3783)

CLW > 0.10 mm

MiRS Static

MiRS Air Mass/Hybrid

ECMWF
Developing a TC-Specific Version of MiRS

• Motivation:
 – MiRS data currently used in the operational TC Intensity Algorithm (developed at CIRA). Utilizes T and WV sounding to estimate warm core structure combined with statistical/dynamic model to estimate and predict TC intensity.
 – Challenge: (1) retrieval of warm core structure complicated due to presence of hydrometeors; scattering signal in TBs can interfere with retrievals (2) hurricane warm core structure is anomalous relative to “global climatology” currently used as a priori constraint in MIRS.

• Experiments with SNPP/ATMS (3 control parameters)
 – Modify use of higher frequency channels in scenes likely to have large amounts of scattering
 o (A) Oper: Use all 22 channels, (B) Turn off WV channels (18-22) when rain detected, (C) Turn off all high-frequency channels when rain detected (16-22).
 – Test varying sources of First Guess/Background constraints:
 o (A) Oper: Climatology f(lat,lon,time,month), (B) TC-Climatology based on COSMIC RO data (from CIRA)
 – Vary number of EOF basis functions for T and WV profiles:
 o (A) Oper: nEOFT=7, nEOFWV=5, (B) nEOFT=9, nEOFWV=4 when rain detected
Case Study: Hurricane Edouard, Sept 2014

- 11-19 Sept 2014
- Maximum strength: 105 knots, 955 mb (16 Sept)
- Retrievals performed:
 - 12 Sept
 - 13 Sept
 - 16 Sept

<table>
<thead>
<tr>
<th>Experiment</th>
<th>2nd att BG T</th>
<th>2nd att BG WV</th>
<th>WV Chans 18-22 On/Off</th>
<th>Chans 16-17 On/Off</th>
<th>2nd att nEOF T and WV</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPER</td>
<td>Oper</td>
<td>Oper</td>
<td>ON</td>
<td>ON</td>
<td>Oper</td>
</tr>
<tr>
<td>Exp 10</td>
<td>Oper</td>
<td>Oper</td>
<td>OFF</td>
<td>ON</td>
<td>Oper</td>
</tr>
<tr>
<td>Exp 66</td>
<td>Oper</td>
<td>TC</td>
<td>OFF</td>
<td>ON</td>
<td>Oper</td>
</tr>
<tr>
<td>Exp 70</td>
<td>Oper</td>
<td>TC</td>
<td>OFF</td>
<td>ON</td>
<td>nEOF T=9, nEOF WV=4</td>
</tr>
<tr>
<td>Exp 76</td>
<td>Oper</td>
<td>TC</td>
<td>OFF</td>
<td>OFF</td>
<td>nEOF T=9, nEOF WV=4</td>
</tr>
</tbody>
</table>
Temperature Anomaly Along -58 deg Lon: 2014-09-16

ECMWF

Oper

Exp10

Exp66

Exp70

Exp76

Location of Vertical Cross-section

Exp70 and Exp76 closest to ECMWF anomaly

Hurricane Bonnie, 1998

Kidder at al. (2000)
• **Best result mid, upper-trop**: TC climatology for WV BG + chans 16-22 off (cold bias below 800-850 hPa); but ECMWF may also have errors

• Use of TC-specific WV BG critical when all WV sounding channels turned off

• **Future**: FG/BG from forecast, TC-specific covariance/EOFs, additional TCs (Joaquin 2015, Matthew 2016), validation w/dropsondes, continue collaboration with CIRA

<table>
<thead>
<tr>
<th>Exp</th>
<th>2nd att BG T</th>
<th>2nd att BG WV</th>
<th>WV Ch 18-22 On/Off</th>
<th>Ch 16-17 On/Off</th>
<th>2nd att nEOF T and WV</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPER</td>
<td>Oper</td>
<td>Oper</td>
<td>ON</td>
<td>ON</td>
<td>Oper</td>
</tr>
<tr>
<td>Exp 10</td>
<td>Oper</td>
<td>Oper</td>
<td>OFF</td>
<td>ON</td>
<td>Oper</td>
</tr>
<tr>
<td>Exp 66</td>
<td>Oper</td>
<td>TC</td>
<td>OFF</td>
<td>ON</td>
<td>Oper</td>
</tr>
<tr>
<td>Exp 70</td>
<td>Oper</td>
<td>TC</td>
<td>OFF</td>
<td>ON</td>
<td>nEOF T=9,nEOF WV=4</td>
</tr>
<tr>
<td>Exp 76</td>
<td>Oper</td>
<td>TC</td>
<td>OFF</td>
<td>OFF</td>
<td>nEOF T=9,nEOF WV=4</td>
</tr>
</tbody>
</table>
Summary

• MiRS is relatively mature algorithm; evolution and improvement since SNPP launch (v9.2 -> v11.2); additional improvements in progress.
• Next version (v11.3): Will include extension to J01/N20 ATMS processing
• Path Forward
 – FY18 Milestones: (1) preDAP delivery in Feb/Mar 2018 (initial cal/val), (2) official DAP ~L+12 months.
 – Future Improvements:
 • Snowfall Rate, included in v11.3
 • Snow (vegetation correction to emissivity), included in v11.3
 • CLW over land to improve light rain detection, included in v11.3
 • Air mass-dependent bias corrections
 • TC-specific applications (FG/BG a priori based on TC climo or 6-h fcst)
 • Rainy condition sounding (update a priori constraints)
 • Stakeholders/user needs...
Validation of Oceanic Cloud Liquid Water: Collocation with ARM Ground-based Measurements

Eastern N. Atlantic (Azores) ARM site:
- 3 channel radiometer (23, 30, 89 GHz)
- Period: 2014-03-01 to 2017-07-24
- Collocation window: +/- 1 hour

Global ocean collocation with GPROF GPM CLW

October 2016
- Corr: 0.71
- StdDev: 0.07 (0.08)
- Bias: 0.005 (0.03)

Spring
- Corr: 0.63
- StdDev: 0.20
- Bias: -0.20
- Npts: 565

Fall
- Corr: 0.66
- StdDev: 0.16
- Bias: -0.05
- Npts: 394
Testing an Air Mass-Based Radiometric Bias Correction: Ocean Emissivity

MIRS-FASTEM (Static Correction)

31 GHz

Corr: 0.665
Bias: 0.009
StDv: 0.031

88 GHz

Corr: 0.805
Bias: 0.010
StDv: 0.026

MiRS-FASTEM (Air-mass Correction)

31 GHz

Corr: 0.834
Bias: 0.005
StDv: 0.021

88 GHz

Corr: 0.882
Bias: 0.007
StDv: 0.021