Toward Regional Validation and Potential Enhancements to NOAA Polar SST Products

Yanni Ding1,2, Alexander Ignatov1, Michael Grossberg3, Irina Gladkova1,3, Calvin Chu3

1STAR, NOAA Center for Weather and Climate Prediction (NCWCP), USA
2CIRA, Colorado State University (CSU), USA
3City College of New York, USA
ACSPO System and Polar Products

i. Advanced Clear-Sky Processor for Oceans (ACSPO) – NOAA SST system

ii. S-NPP VIIRS; NOAA-18/-19, Metop-A/-B AVHRR; Terra/Aqua MODIS

iii. Current global monitoring and validation

 SQUAM: www.star.nesdis.noaa.gov/sod/sst/squam/

iv. Complementing global Validation with Regional was recommended by JPSS Program Office
Motivation for L3 Products (aggregated/gridded in space and potentially in time)

i. Main ACSPO product: Level 2 (L2P) – in swath projection

ii. **L3U** (Un-Collated) – data from different overpasses are preserved. Requested by ACSPO users, to reduce data volume – implemented (1GB/day vs. 27GB/day for L2P)

iii. **L3C** (Collated; data from different overpasses from the same satellite are fused together) / **L3S** (Super-collated; data from different satellites): Requested by some users to analyze SST imagery (fewer files/images, fewer gaps in imagery, smaller data

http://lms.seos-project.eu/learning_modules/marinepollution/marinepollution-c03-s06-p01.html
New ACSPO Regional Monitor for SST (ARMS) is being developed

i. Temporary location

www.star.nesdis.noaa.gov/sod/osb/sst/yding/specialregionsfoundation/

ii. 1st step towards L3C/L3S – How many images over a target area? Is domain/SST consistent?

iii. Focuses on challenging areas: Coastal / Internal waters; High-latitudes; Cloudy regions; Dynamic areas (e.g., Gulf Stream); Other regions of interest to SST users
Interface of the ARMS

- Currently, monitors only polar satellites (geostationary may be added later)
- Monitored are: SSTs and ΔSSTs=SST-Ref. SST (CMC L4), Clear-sky and All-sky
- Currently, includes 18 special regions (can be changed/expanded based on users needs)
Example #1: Coastal/Dynamic region (Chesapeake Bay)
Example #1: Coastal/Dynamic region (Chesapeake Bay)

✓ The cold regions (coastal and dynamic areas) may be identified as “cloud” by ACSPO
Example #2: High-latitudes (Greenland/Norwegian Seas)

Stay still, does not move like clouds

"Cloud"

"Cloud"

"Cloud"

Ice
Example #2: High-latitudes (Greenland/Norwegian Seas)

- Sea ice and cold water may be identified as “cloud” by ACSPO.
Challenges facing L3C/L3S SST products

- **L3C/L3S SSTs**
 - gridded, two data sets per day (daytime & nighttime)
 - aggregate data from different passes of the same satellite / different satellites
 - convenient for users to do image analysis (fisheries, shipping, etc)

- **Difficulties in processing L3C/L3S**
 - Impact of overpass time
 - Satellite(s) pass at different times, subject to different phases of diurnal cycle (work is underway to model or measure the diurnal cycle)
 - SST is not static – patterns may move
 - Impact of variable cloud
 - Impact of variable view zenith angle
 - Non-uniform quality control of data

Source: https://www.ghrsst.org/science-and-applications/sst-definitions/
Two VIIRS overpasses over the southeast US coast, daytime

June 17th, 12:10-12:20pm

June 17th, 13:50-14:00pm

Very few clouds

Distribution of ΔSST (SST - ref. SST)

Daytime warming in 1 hour and 40 minutes
Two VIIRS overpasses over the southeast US coast, nighttime

June 17th, 1:00am

June 17th, 2:40am

Distribution of ΔSST (SST - ref. SST)

Very few clouds

Nighttime cooling in 1 hour and 40 minutes
Two VIIRS passes over the Black Sea, nighttime

August 17th, 0:00 UTC

August 17th, 23:40-23:50 UTC

23h40m interval, minimum impact of diurnal cooling

Distribution of ΔSST (SST - ref. SST)

Different due to varying cloud distribution
The ACSPO Regional Monitor website is in advanced stage. It provides a convenient way to monitor and examine the performance of ACSPO SST in various regions of the ocean (e.g., coastal and dynamic ocean, high latitudes, etc). Our experience suggests that the ACSPO clear-sky mask tends to be overly conservative in those regions.

To obtain a high-quality L3C product, various factors should be considered, including the diurnal cycle, dynamics of SST patterns, cloud distribution and satellite view zenith angle.

We are considering reconstructing a SST diurnal cycle based on both observations (geostationary satellite, etc) and level 4 products (OSTIA diurnal SST in process, etc).

Work is underway with the users to decide on the value of L3C/L3S products, as opposed to the approach when high-spatial and temporal resolution L4 analysis is produced, with instantaneous L2/L3U inputs.

In this case, the current users of L3C/L3S products will use the L4 gap free filed, whereas ARMS system will be used to validate such high-resolution L4 analysis, rather than be directed at creation of various flavors of L3C/L3S products.
Thanks!

Any questions?
Back-up slides