Technical Support Unit for the National Climate Assessment

Sarah Champion and Liqiang Sun
NOAA Cooperative Institute for Climate and Satellites
Asheville, NC

November 29, 2016
Overview

• Hosted by the National Centers for Environmental Information (NCEI)
• Multi-disciplinary team
• Initially established to support 3rd National Climate Assessment (NCA3) and the sustained assessment process
• Comprised almost entirely of CICS-NC staff
TSU Science Team

- **Kenneth Kunkel - Lead Scientist**
- Liqiang Sun - Research Scientist/Modeling Support
- Laura Stevens - Research Scientist
- Andrew Buddenberg - Scientific Programmer
- Jim Biard – Scientific Programmer

- Climate Scenarios
- Technical Reports
- State Climate Summaries
Data and Metadata

- Sarah Champion - Data Architect and Team Lead
- Kristy Thomas - Metadata Support
- Mara Sprain – references, copyrights

- Ensure IQA standards implemented
- Collect figure metadata
- Coordinate dissemination of TSU-generated datasets
Editorial and Project Management

- Brooke Stewart – Science and Technical Editor/Project Management
- Tom Maycock – Science and Technical Editor
- Jen Runkle – Science and Technical Editor
- Anne Waple – Science and Technical Editor
- Tyler Felgenhauer – Science and Technical Editor

- Editing
 - Style Guide
 - Basic Copyediting
 - Grammar, punctuation, spelling
 - Conform to style sheet
 - Help craft text for readability, clarity
Graphics – The NCEI Graphics Team

- Sara Veasey - Creative Director
- Jessica Griffin - Graphic Designer
- Debbi Riddle - Graphic Designer
- Deb Misch - Graphic Designer
- Liz Love-Brotak - Graphic Designer

- Produce high quality graphics
- Document layout
Finding 10: ECOSYSTEMS

SPECIES RESPONSES TO CLIMATE CHANGE

Mussels and barnacle beds have declined or disappeared along parts of the Northwest coast due to higher temperatures and drier conditions. ①

Conifers in many western forests have died, experiencing mortality rates up to 87% from warming-induced changes in the prevalence of pests and pathogens and drought stress. ②

Warming-induced interbreeding was detected between southern and northern flying squirrels in the Great Lakes region of Ontario, Canada, and Pennsylvania after a series of warm winters created more overlap in their habitat ranges. ③

First flowering dates in 178 plant species in North Dakota have shifted significantly in more than 40% of all species examined, with the greatest changes observed during the two warmest years of the study. ④

In the Northwest Atlantic, 24 out of 56 commercial fish stocks showed significant range shifts, both in latitude and depth, between 1968 and 2007 in response to increased sea surface and bottom temperatures. ⑤

Widespread declines in body size of resident and migrant birds in western Pennsylvania were documented over a 40-year period. The higher the average regional temperatures in the preceding year, the smaller the birds. ⑥

Seedling survival for nearly 30 species of trees decreased during years of lower rainfall in the Southern Appalachians and the Piedmont areas, indicating reductions in native species. ⑦

Warmer springs in Alaska have reduced calving success in caribou populations as a result of earlier onset of plant emergence and decreased spatial variation in growth and availability of forage to breeding caribou. ⑧

Quaking aspen tree dominated systems are experiencing declines in the western U.S. due to drought stress during the last decade. ⑨

Studies of black rattlesnake populations in Illinois and Texas suggest that snake populations, particularly in the northern parts of their ranges, could benefit from rising temperatures if there are no negative impacts on their habitat and prey. ⑩

Climatic fluctuations increase the probability of infidelity in birds that are normally monogamous. This increases gene exchange and the likelihood of offspring survival. ⑪

Climate change is likely to influence edaphic patterns in vegetation as Hawaiian mountain vegetation types vary in their sensitivity to changes in moisture availability. ⑫

Some warm-water fishes have moved northwards, and some tropical and subtropical fishes in the northern Gulf of Mexico have increased in temperate ocean habitat. ⑬ Similar shifts and invasions have been documented in Long Island Sound and Narragansett Bay in the Atlantic Ocean. ⑭

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭
Climate Impacts on West Nile Virus Transmission

Natural Host
Birds
Warmer winters, longer frost-free season, and earlier spring arrival may influence the migration patterns and fledging survival of birds that are the natural host of West Nile virus.
Key species: American robins, house finches, and house sparrows.

Insect Vector
Mosquitoes
Rising temperature, changing precipitation patterns, and a higher frequency of extreme weather events are likely to influence the distribution and abundance of mosquitoes that transmit West Nile virus by altering aquatic habitat availability and mosquito and viral reproduction rates.
Key species: Cx. tarsalis, Cx. pipiens, Cx. quinquefasciatus.

Incidental Host
Humans
Humans are not central to the West Nile virus transmission cycle, but can suffer serious health consequences if infected. Changing weather patterns will likely impact human behavior and exposure to mosquitoes that carry West Nile virus. Mosquito control or personal protection practices like wearing long-sleeves or repellent can reduce the risk of infection.
Life Cycle of Blacklegged Ticks, Ixodes scapularis

- **SPRING**
 - Eggs
 - Nymph

- **EARLIER SPRING**
 - Eggs

- **WINTER**
 - Larva
 - Risk of human infection greatest in late spring and summer

- **SUMMER**
 - Adult

- **FALL**
 - Later Fall
Web/Technology

- Angel Li - Web Developer
- Kate Johnson - Web Developer
- Andrew Buddenberg - Software Engineer

- Develop report websites (e.g. nca2014.globalchange.gov)
- Develop support websites (e.g. author resources, review and comment system).
- Other software engineering (e.g. metadata flow to GCIS).
Web/Technology Products

- Resources web site for NCA report authors
- Review and comment system for organization of external review comments and responses
- Web sites for NCA products
 - NCA3 – highly regarded presentation of NCA3 report
 - Climate and Health report – followed the NCA3 example with another highly regarded web site
TSU Science Products

- Scientific Reports
 - NOAA NESDIS Technical Report 142, Parts 1-9

TSU Science Products

• Scientific Reports
 ➢ NOAA NESDIS Technical Report 144

➢ NOAA State Summaries
 • To be published in late 2016 or early 2017
TSU Science Products

- Scientific Analysis
 - Third National Climate Assessment
 - Observations (e.g. COOP)
 - Global climate model (CMIP3) products
 - Regional Climate Model (NARCCAP) model products
 - Statistically-downscaled (Asynchronous Regional Regression Model) model products

- Climate Science Special Report
- CMIP5
 - Localized Constructed Analogs (LOCA) statistically downscaled data set
Climatic Trends: Freeze-free Season
Weighting

- Independence Weights - Inter-model distances computed as simple root mean square differences are used to calculate independence weights.
- Skill Weights - The RMSE distances between each model and the observations are used to calculate skill weights.
- An overall weight is then computed as the product of the skill weight and the independence weight.

Variables

1. Surface Temperature (seasonal)
2. Mean Precipitation (seasonal)
3. TOA Shortwave Flux (seasonal)
4. TOA Longwave Flux (seasonal)
5. Vertical Temperature Profile (seasonal)
6. Vertical Humidity Profile (seasonal)
7. Surface Pressure (seasonal)
8. Coldest Night
9. Coldest Day
10. Warmest Night
11. Warmest day
12. Seasonal max. 5-day total precip.

Sanderson et al. 2016
Projected Seasonal Moisture Change (upper layer)
RCP8.5 2070-2099

- Winter
- Spring
- Summer
- Fall
LOCA - Annual Maximum Number of Consecutive Dry Days: RCP8.5 2070-2099
Any questions?